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Abstract—Camels hold significant economic, social, and cul-
tural importance for communities in the Middle East. Tradi-
tional camel herding practices in desert areas face numerous
challenges, including road accidents, overgrazing, and disease
transmission. The use of modern technology, such as drones
and health sensors, presents a promising approach for en-
hancing grazing practices, ensuring sustainability, and boosting
productivity. However, several technical challenges need to
be addressed, including detecting camels from a high-altitude
perspective and tracking camel movement using single-lens
drones, which are hindered by inadequate communication and
electrical infrastructure. In this paper, we propose a sustainable
lightweight artificial intelligence (AI) system to enhance the
efficiency of camel grazing within limited resources. The system
consists of two components: the first is a new Al deep-learning
model for detecting camels. It is trained on a brand new
dataset of camel aerial images in desert areas. This model
enables the real-time detection of camels in high-altitude drone
footage, overcoming challenges such as camouflage and the
small size of objects. The second component is a monocular
camera-based positioning system for estimating the locations
of camels using low-cost civilian drones. The system converts
pixel coordinates into geographic coordinates, enabling herders
to track the movements of their camels efficiently. The system
offers a sustainable solution by utilizing low-cost civilian drones
and edge computing, making it accessible to low-income herders
and eliminating the high costs associated with GPS collars and
satellite connectivity.

Index Terms—non-terrestrial, drone perspective, herding,
recognition, positioning

I. INTRODUCTION

Camels are essential to the livelihoods of millions across
arid and semi-arid regions, particularly in the Middle East
and North Africa. Camels are not only a cultural symbol
but also a source of food, fiber, and income. However,
traditional camel herding practices face increasing challenges
owing to environmental degradation, road safety concerns,
and inefficient grazing management. For instance, over 600
road accidents annually in Saudi Arabia are attributed to stray
camels, prompting the implementation of stricter regulations
and penalties for herders [1].

To address these issues, there is a growing need for
intelligent monitoring integrated with non-terrestrial network
(NTN) systems that can track camel movements, prevent
overgrazing, and improve herding efficiency. Unmanned aerial
vehicles (UAVs) offer a promising solution due to their
mobility, affordability, and ability to capture high-resolution

imagery over vast desert landscapes [2]. However, deploying
UAV-based systems in remote desert environments presents
unique challenges, including limited communication infras-
tructure, harsh environmental conditions, and the difficulty
of detecting camels from high altitudes. Researchers have
explored various connectivity methods between the ground
and satellites by predicting network traffic and preallocat-
ing resources to optimize energy consumption, latency, and
operational requirements [3]. However, traditional terrestrial
networks and electricity infrastructure are often unavailable
in remote desert areas. Satellite connections are unsuitable
because of their high latency and expensive service charges.
Other existing solutions, such as applying Global Positioning
System (GPS) collars onto camels or using satellite imaging,
are not feasible in resource-constrained desert environments.
Utilizing UAVs to establish a non-terrestrial wireless commu-
nication system between camels and herders during grazing
is more sustainable and cost-effective [4].

Building on the momentum of Al-driven advancements in
digital connectivity and network optimization across the Arab
world, innovative solutions are being developed to address
specific regional challenges, such as the technical obstacles
faced in camel husbandry. [5]. Although modern technologies
offer viable solutions for developing innovative monitoring
systems, camel husbandry faces several technical challenges.
First, it is challenging to spot camels in deserts from high
altitudes using single-lens civilian drone cameras. The images
captured by drones are usually taken from a far distance in the
air, causing the camels to appear small in pictures. In addition,
camels blend into the desert environment owing to their
patterns of sand, rocks, and plants, making them difficult to
recognize using traditional methods. Moreover, most datasets
of camel pictures focus on ground-level images, and there is
a lack of image datasets from high altitudes for camel-image
recognition. New datasets from high-altitude perspectives are
required to train Al models to recognize camels in deserts.
Second, livestock positioning using a civilian UAV equipped
with a single-lens camera imposes obstacles. The height of
the UAV, as well as the pitch and yaw angles of the camera,
affect the field of view and resolution. Variations in altitude
can impact the scale, whereas incorrect angles may distort
the captured imagery. Owing to their focal length and field
of view, single-lens cameras are limited in capturing broad



fields of view, which affects spatial coverage. Additionally,
synchronizing the GPS data, flight log data, and video frames
is a complex process that requires proper alignment for
accurate positioning.

This paper proposes a lightweight, UAV-based camel
monitoring system that combines deep learning for aerial
camel recognition with a monocular camera-based positioning
method. The system is designed to operate in resource-
constrained environments and aims to provide a cost-effective
and sustainable alternative to GPS collars and satellite imag-
ing. We introduce a new aerial camel dataset, train a YOLO-
based detection model, and develop a projection-based po-
sitioning algorithm using UAV telemetry data. Our results
demonstrate the feasibility of this approach for real-time
camel tracking and behavioral analyses.

II. BACKGROUND AND RELATED WORKS

Camel grazing is deeply embedded in the cultural and
economic fabric of the Middle East. However, unregulated
grazing has led to significant ecological consequences, with
studies estimating that over 40% of the Arabian Peninsula’s
rangelands are degraded due to overgrazing [6]. A recent
study showed that the majority of camel owners lack sufficient
knowledge and practical behavior [7]. Traditional herding
methods rely heavily on manual observation and lack the
precision required for sustainable land management. Recent
efforts have explored the integration of innovative agricultural
technologies, including internet of thing (IoT)-based health
sensors and GPS-enabled tracking systems, to modernize
livestock management [8], [9].

Target positioning and distance measurements are critical
tasks in wildlife and livestock monitoring. Despite their
effectiveness, GPS collars and satellite imaging are often
prohibitively expensive and impractical for large-scale de-
ployment in remote desert regions of the world. However,
providing each animal with a location-tracking device can
result in significant costs and energy consumption [10],
posing practical challenges for widespread implementation
in livestock management. UAVs equipped with monocular
cameras offer a more accessible alternative, but they introduce
new challenges in object detection and geolocation. Camels
are challenging to detect from aerial views because of their
natural camouflage and small size in high-altitude imagery.
Moreover, monocular cameras lack depth perception, which
complicates distance estimation and spatial localization.

Previous research in computer vision has explored various
camera models for object detection and distance estimation.
Classical models, such as pinhole and perspective projection
frameworks, provide a mathematical basis for estimating
object positions from 2D images [11]. However, in practical
applications, applying this model to estimate the distance
to the corresponding target in the sampling camera often
requires additional information because objects with the same
appearance but different sizes may have the same projection
on the camera. The utility of the camera model extends
across a broad spectrum of applications in computer vision

and graphics. Different environments and cameras may cause
changes in the various parameters. Therefore, appropriate
models must be applied and fine-tuned to adapt to the scene.
Positioning methods for monocular cameras may require ad-
ditional prior information or external data from third parties to
obtain an accurate distance estimation. Megalingam leverages
prior information about target objects and applies similarity
principles to calculate the distance to the target using this
information [12]. Some studies have proposed deep learning-
based approaches for monocular distance estimation, such as
DisNet [13], which takes the relative position and size of
the target object in the image as input and uses five hidden
layers for inference. However, these methods often require
extensive training data and are sensitive to changes in camera
orientation and focal length.

In the context of livestock monitoring, UAV-based systems
have been used to track cattle and sheep. However, few studies
have focused on camels, which present unique challenges
owing to their size, movement patterns, and desert habitat.
Our work contributes to this emerging field by developing a
specialized dataset and a lightweight recognition and position-
ing system tailored for camel herding in desert environments.

III. PROPOSED SYSTEM

To support highly automated and sustainable herding in the
camel grazing industry, we introduce a system for intelligent
monitoring that relies on a single UAV. The framework
comprises two components. First, we employ deep-learning
techniques to detect camels from the air using a UAV. Second,
we estimate the geographical locations of camels using drone
flight data.

A. Camel Recognition from High-Altitude UAV Perspective

In this task, we considered a herd of camels grazing freely
in the desert. A drone approaches the camels in motion and
captures videos. The background program takes images as
input and outputs the possible positions of camels in the
picture. Rectangular bounding boxes were used to mark the
outer outline of the camels with confidence probabilities.

1) Dataset: We identified a typical limitation in existing
camel datasets: most images captured from frontal or near-
profile angles feature camels that take up more than half
of the frame. These images do not efficiently represent the
perspective of the UAVs. In aerial videos, camel objects
appear compact and occupy only a small portion of the frame.
Models trained on current open-source datasets struggle to
perform well on aerial videos because of these differences.
To address this issue, we created a new dataset using images
captured from a high-altitude drone perspective. Our goal is
to capture camel imagery from an aerial viewpoint and build a
specialized dataset that bridges the gap between conventional
camel datasets and the unique visual characteristics seen in
aerial videos. This achievement aims to provide reassurance to
those involved in aerial video analysis, enriches the diversity
of available resources, and serves as a crucial foundation



(a) Existing dataset

(b) Our dataset

Fig. 1: Datasets Comparison

for training models capable of accurately detecting camels
in UAV perspectives.

For each training video segment, we extracted one image
every 20 frames and eliminated images with excessive simi-
larity and without camels. We employed image augmentation
methods, including random brightness adjustment, contrast
adjustment, and noise addition, to further enhance the dataset.
Finally, we obtained 1170 training samples after image aug-
mentation. To facilitate training, we resized the image to a
resolution of 1080 x 1080. Figure 1 shows examples of the
existing and our datasets.

2) Model Design: Unlike typical object detection tasks,
the images in this task were captured from a high-altitude
UAV in a bird’s-eye view perspective. The target objects are
smaller and more challenging to distinguish than those in ev-
eryday detection tasks. The distinction between small objects
often relies on local features. However, convolutional pooling
operations in deep networks may discard shallow-level local
information. Therefore, preserving small-scale local features
using appropriate methods is crucial for addressing these
problems.

Achieving real-time performance that supports video
streaming is essential for camel recognition in the desert.
The You Only Look Once (YOLO) model employs a one-
stage prediction and utilizes predefined anchors to facilitate
detection, providing superior real-time capabilities as the
foundational model for our camel recognition task. We de-
veloped an anchor-based YOLO model, in which the number
of final feature maps and anchors determined the output. The
model detects the presence of camels in a given image and
accurately describes their locations using bounding boxes.
The input of the network is a single picture, and its input
dimension is w x h x 3, where w and h represent the width and
length, respectively, and 3 represents the three color channels
of an RGB image. The output is a vector with the dimension
n x (c+4+1), where n represents the number of all objects
in the image, c represents the number of classes of objects
in the dataset, and 4 denotes the value of the bounding box
(z,y,w,h), where x,y,w, h indicate the center position of
the bounding box and its width and height, respectively. The
last dimension represents the confidence probability that an
object is inside the bounding box. The loss function of this
network comprises three weighted parts: objectness loss, class

loss, and rectangular bounding box loss. The objectness loss,
also known as object confidence loss, assesses the prediction
performance of the model in terms of confidence probability.
It can be modeled as the binary cross-entropy loss (BCE) loss
function,

N
— 2 yilog(gi) + (1 —yi) log(1 —gi)], (1)

i=1
where §; represents the output of the neural network, and
y; denotes the true label, which has a value of 0 or 1. The
class loss measures the accuracy of the classification and is
also computed using the BCE loss. The bounding box loss
assesses the position of the predicted bounding box and is
heavily influenced by the ontersection over union (IOU):
51
Sy’
where S; represents the intersection area between the true
bounding box and the predicted bounding box, while S is
the combined area of the true bounding box and the predicted
bounding box. Additional IOU variants, such as complete in-
tersection over union (CIOU) and generalize intersection over
union (GIOU), are also available as optional loss functions in
the model.

The YOLO model comprises several crucial submodules,
including significant components such as the cross stage
partial network (CSPN) and spatial pyramid pooling (SPP).
CSPN is a simplified residual network that can enhance the
learning ability of convolutional neural network (CNN) and
maintain accuracy while being lightweight. SPP incorporates
a continuous pooling and residual connection process, which
effectively extracts features of different scales. In the detection
head, the model includes up- and down-sampling processes in
the form of a feature pyramid networks (FPN) and connects
different sampling layers through techniques such as skip
connection.

Table I presents the details of the model structure.
CBL denotes the Conv2d-BN-LeakyReLU layer, which con-
tains a convolutional layer, batch normalization layer, and
LeakyReLU activation layer.

10U = 2)

TABLE I: Model Network Architecture

Layer Type Repeated Layer Type Repeated
Times Times

1 CBL 2 13 CSPN 1

2 CSPN 1 14 CSPN 2

3 CBL 1 15 Upsample 1

4 CSPN 1 16 Concatenate 1

5 CBL 1 17 CSPN 2

6 CSPN 1 18 CBL 1

7 CBL 1 19 Concatenate 1

8 CSPN 1 20 CSPN 2

9 SPPF 1 21 CBL 1
10 CBL 1 22 Concatenate 1

11 Upsample 1 23 CSPN 2
12 Concatenate 1 24 Detection Layer 1

B. Camel Positioning by a Single-lens Drone

We encountered challenges in accurately estimating dis-
tances owing to the constantly changing perspectives of civil-
ian drones. The varying sizes of our target objects, camels,
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Fig. 2: Drone observation and pinhole models
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further complicate distance estimation and positioning. To
address these issues, we developed a cost-effective positioning
method explicitly designed for civilian drones equipped with
a monocular camera. We tested this method on the video
dataset mentioned earlier and found that accurate animal
positioning was possible within an acceptable margin of error.
Our approach capitalizes on the agility and accessibility of
civilian drones, enhancing their ability to collect data from
remote desert terrain. By implementing our algorithms on
civilian drones, we can precisely position camels without
expensive equipment. We illustrate our method for camel
positioning in deserts using a single-lens camera mounted on
a UAV and propose a system for tracking camels.

1) Problem Description: Figure 2a shows a drone in a
hovering state, with its camera oriented at a downward angle,
capturing images of camel objects on the ground. Because
we focused on observing camels within desert terrain, we
adopted the simplifying assumption of a flat ground surface.
Let the altitude of the drone be denoted as hg. The camera
of the drone was adjusted to rotate downward relative to the
horizontal axis for ground-level observation. We denote this
downward pitch as pg. Light rays perpendicular to the imaging
plane of the camera pass through the optical center and are
directed to the ground. This distance can be expressed as

do = hg csc(po)- 3)

Owing to the lack of distance between the camera and
camels within the field of view, it is challenging to derive the
geographical coordinates corresponding to pixels by directly
applying the perspective projection model with the camera’s
intrinsic and extrinsic parameter matrices. Nevertheless, the
flat terrain provided favorable conditions for employing the
pinhole model, enabling the calculation of the camel’s corre-

sponding geometric coordinates. As illustrated in Figure 2b,
we considered a scenario in which the object plane remained
parallel to the imaging plane. Light from the objects traverses
a small pinhole directly onto the imaging plane. The distance
from the camera lens to the imaging plane can be represented
as

mo = 2o + fo, 4

where fy denotes the default focal length, and 2z, denotes an
extra distance that can be altered through human operation
and camera settings. The vertical p, and horizontal p, pitch
angles of the camera’s field of view from the center can be
expressed as

Yo Zo
py = arctan( O), Py = arc aun(mo)7 (5)

where yo and xg represent the vertical and horizontal dis-
tances from the center of the imaging plane to the upper
boundary, respectively.

As shown in Figure 3, we considered the scenario of a
single pixel. The coordinates of this pixel in the coordinate
system with the center of the imaging plane as the origin are
denoted by (z,,y,). We established the camera coordinate
system using the vertical projection of the camera onto the
ground as the origin, with its positive y-axis direction aligned
with the projection of the main perspective on the ground.
Light starts from the target pixel and travels through the
optical center to reach the ground. The coordinates corre-
sponding to this pixel on the ground can be represented as
(xg4,yy), satisfying the relationship

sp = arctan y—p7 6)
mo
dg = hocsc(sp+po), dp= \/m, (7)
Lp
g =L xd,, y,=nhocot(sp+po), 3)

dg

where s, denotes the angle shift from the drone’s center of
view. d, denotes the distance from the optical camera to the
target, which is the red line in Figure 3. Here, d,, denotes the
distance from the optical center of the camera to the pixel
position on the imaging plane, which is the blue line shown
in Figure 3.

To obtain the target’s latitude and longitude coordinates, we
need to transform the target into the camera coordinate system
to longitude and latitude. The yaw of the UAV based on the
true north is denoted by o. We needed to transform them
into a coordinate system with the true north as the positive

direction of the y-axis. The new coordinates are denoted as
Az and Ay:

Az =x4c080 —ysino, Ay =ygsino+ycoso. (9)
From this, we can estimate the latitude and longitude of the
target by
Az

A
latztude = latd+ fy, lOng’ltude = lOnd+ m,
(10)
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Fig. 4: Model evaluation

where the Earth’s radius is denoted as R, and the latitude
and longitude of the drone are denoted as laty; and long.
By combining the above equations with the UAV flight
data, we can deduce the geographical latitude and longitude
coordinates corresponding to the pixel positions.

IV. SYSTEM DEMONSTRATION

In this section, we demonstrate two key components of our
proposed system: the camel recognition model from a drone
perspective and the camel positioning and geotagging system.

1) Camel Recognition Model from UAV Perspective: In
this task, we collected new data in deserts and constructed
a unique dataset from the drone perspective for camel recog-
nition. Furthermore, we trained a new YOLO-based model to
detect camels in the desert from the air.

To construct a new dataset for camel recognition, we used
the DJI MAVIC MINI drone to capture approximately three
hours of video footage in the deserts of Makkah Province,
Saudi Arabia. The parameters and camera specifications of
the drone model utilized in our study are detailed in Table II.

TABLE II: Drone Performance Parameters

Performance Parameters Value
Model Name DJI MAVIC MINI
Max Speed 13 m/s
Battery Capacity 2400 mAh
Max Flight Time 30 minutes
Diagonal Distance 213 mm
Maximum FOV 83 degree
Video Resolution FHD:1920x1080 24/25/30/48/50/60p
Max Video Bitrate 40 Mbps

We trained the recognition model for 300 epochs on an
NVIDIA A100 GPU, which took approximately eight hours.
Figure 4 illustrates the evolution of the evaluation metrics
during training. These losses indicate that our model fits the
dataset and performs well. Figure 5 shows the performance
of the test video examples. The evaluation indicated that our
new model yielded satisfactory detection results.

2) Camel Positioning and Geotagging: To evaluate the
effectiveness of our camel positioning method, we used
the aforementioned new dataset, which comprises approxi-
mately three hours of aerial footage captured from a drone

(b) Recognition result 2
Fig. 5: Camel recognition results in deserts

(a) Recognition result 1

(b) Estimated camels’ locations with
drone’s FOV

(a) Original video frame

Fig. 6: Result of camels’ positioning

perspective, focusing on camel activities. Initially, we em-
ployed a deep learning model to predict the positions of
camels in video frames, generating bounding boxes around
them. Leveraging the centroid coordinates of these predicted
bounding boxes as a reference, our algorithm computes the
corresponding geographic coordinates.

Essential flight data, such as the drone’s GPS coordinates,
altitude above ground level, yaw, and camera pitch, were
obtained from telemetry data transmitted during the flights.
Figure 6(a) shows a video frame captured by the drone
camera. Figure 6(b) shows the outcome of our methodology in
the corresponding estimated field of view (FOV) and camels’
positions. The trapezoidal box represents the FOV of the
drone, and the red points represent the camel positions. The
results show that our algorithm is effective in accurately de-
termining the spatial coordinates of camels in aerial footage.

Building on this foundation, we developed a user-friendly
system, as shown in Figure 7. The system displays the
tracking trajectories of camels, facilitating enhanced data
collection and research on camels. As the camels move, their
current positions are marked by red points and their previous
positions are shown as yellow clouds. This system leverages
the calculated geographic coordinates of the camels to map
their movements over time. Visualizing these trajectories en-
ables researchers to gain valuable insights into the behavioral
patterns and spatial dynamics of camels, allowing for more
informed analyses.

V. SUSTAINABILITY ANALYSIS AND DISCUSSIONS

Demonstrating a commitment to sustainability, our pro-
posed system offers a resource-efficient approach for manag-
ing herds of camels. By opting for a civilian, low-cost, single-
lens drone and a localized processing unit, we minimized
initial hardware investments compared to resource-intensive
satellite monitoring or the deployment of numerous GPS
collars and smart sensors across herds. The implementation
of the lightweight YOLO architecture optimizes camel recog-
nition on edge devices, lowering the computational overhead
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and power consumption. The use of open-source frameworks
further bolsters sustainability by reducing operational costs,
making this solution a viable and accessible option for low-
income herders. Table III highlights the advantages of the
proposed system over GPS collars, satellite imaging, and other
UAV-based methods.

TABLE III: Sustainability Comparison with Existing Solutions

Method Cost Scalability | Accuracy In[l)frastructure
ependency
c(glll):rs High Low High Low
Isri;e;i:; Very High Moderate Moderate High
Other
UAV Moderate High Variable Low
Systems
Proposed
Single-Lens Low High High None
Drone System

Although the proposed system demonstrates feasibility, sev-
eral areas warrant further exploration to enhance its robustness
and scalability. We proposed a YOLO model for real-time
detection. Future work will include benchmarking quantitative
metrics, including the system’s frame rate and latency on
edge devices, to validate its suitability for live monitoring.
Reliance on a single drone limits its coverage and resilience.
A multi-drone framework can enhance scalability and fault
tolerance by utilizing coordinated flight paths and data fusion
strategies. To validate the positioning accuracy, future studies
should incorporate error modeling and sensitivity analysis to
enhance the understanding of the reliability of projection-

based methods. To cooperate with NTN, future work should
explore mesh networking to ensure reliable communication in
remote areas without the need for network infrastructure.

VI. CONCLUSIONS

In this paper, we demonstrated a lightweight and sustain-
able system for an intelligent automated camel grazing system
in desert areas. We utilized a civilian single-lens UAV to
capture video data from deserts, creating a unique dataset
for detecting camels from an aerial perspective. Leveraging
deep learning frameworks, we trained and evaluated a model
capable of automatically detecting camels effectively. To
improve automated positioning, we proposed a lightweight
method that incorporates UAV flight parameters to determine
the geographical latitude and longitude coordinates of camels
accurately. The lightweight architecture and cost-effectiveness
of our system make it sustainable in diverse scenarios, not
only for camel herding but also for monitoring other livestock
or wildlife in challenging terrains. The dataset and positioning
framework serve as a foundation for researchers conducting
UAV-based ecological studies or precision agriculture.
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